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ABSTRACT 

0 

0 

e 

The exact impedance wedge solution is evaluated asymptotically 

using the method of steepest descents f o r  plane wave illumination at 

normal incidence. Uniform but different impedances on each face are 

considered for both soft: and hard polarizations. The asymptotic 

solution isolates the incident, singly reflected, multiply reflected, 

diffracted. :. ..- 3u~face wave fields. Multiply reflected fields of any 

order are permitted. The multiply reflected fields from the exact 

solution are written as ratios of auxiliary Maliuzhinets functions, 

whereas a geometrical analysis gives the reflected fields as products of 

reflection coefficients. These two representations are shown to be 

ident cal in magnitude, phase and the angular range over which they 

exist The diffracted field includes four Fresnel transition functions 

as in the perfect conductor case, and expressions for the appropriate 

discontinuities at the shadow boundaries are presented. The surface 

wave exists over a finite angular range and only f o r  certain surface 

impedances. A surface wave transition field is included to retain 

continuity. Computations are presented for interior wedge diffractions 

although the formulation is valid for both exterior and interior wedges. 
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I. INTRODUCTION 

e 
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e 

0 
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During this six-month reporting period, our efforts have primarily 

concentrated in deriving diffraction functions to predict the fields 

diffracted by an interior wedge with impedance surfaces. Such 

diffraction functions are most important in analyzing the scattering 

patterns of impedance surfaces, such as corner reflectors, with 

interior angles. Preliminary commputations of scattering patterns from 

such wedges are included in this report. 

The impedance boundary condition has been widely used to analyze 

electromagnetic problems for which the material properties or surface 

characteristics are important. The boundary condition is often 

appropriate for lossy or layered material or for statistically rough 

surfaces, and it provides an approximate means whereby reflection, 

diffraction and surface wave phenomena on physical structures can be 

studied. The impedance boundary condition is a useful approximation f o r  

many physical problems because it includes the material effects without 

explicitly involving the fields within the material. 

The exact solution for diffraction from an impedance wedge was 

presented by Maliuzhinets [ 1 ] - [ 2 ]  for the case of uniform but different 

impedances on each face and for normal incidence. Bucci and 

Franceschetti [3] considered both normal and oblique incidence on the 

half plane and presented a more detailed analysis of the surface wave 

contribution. Tiberio. Pelosi and Manara [4 )  performed a uniform GTL) 

asymptotic evaluation of the exact solution for the exterior impedance 

wedge. Herman and Volakis [5] presented an alternative steepest descent 

e 
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GTD evaluation for the exterior wedge and also included surface wave 

terms. 

In this paper, a uniform geometrical theory of diffraction with 

surface wave contributions is presented for the interior wedge. This 

extends the applicability of the present theory to allow solution of 

more complex scattering geometries which include interior wedges. Both 

exterior and interior wedge-like corners exist on many physical 

structures such as ships, aircraft or spacecraft. In addition, the 

faces of these interior wedges may be of different impedances. On a 

ship for example, the hull and the water surface form an interior 

wedge-like corner with faces of two different materials. namely water 

and steel. Other interior wedges exist between the deck and the 

superstructure of a ship or between the wing and fuselage of an 

airplane. 

In this paper, the exact solution of Maliuzhinets is asymptoticaiiy 

evaluated using the method of steepest descents. This decomposes the 

exact integral solution into individual scattering mechanisms. The 

terms extracted include the incident field, the singly reflected fields. 

the multiply reflected fields, the diffracted field, the surface waves 

and the associated surface wave transition fields. The incident and 

reflected components of the geometrical optics solution are found in 

terms of the Maliuzhinets function as the residues of the geometrical 

optics poles. Each pole in the exact integral solution is shown to 

correspond to a particular geometrical optics term, and the residue of 

the pole is shown to be equivalent to a product of  reflection 

coefficients and a phase factor. Hence the steepest descent solution 
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extracts reflection terms which can be found directly in terms of 

reflection coefficients on impedance surfaces. This correspondence of 

the residues and the reflection coefficients has been demonstrated only 

for the singly reflected fields for the half plane [3], [ 6 ]  and the 

exterior wedge [ 4 ] .  The pole residue reflection terms agree with the 

geometrical analysis in magnitude, phase and in the angular range over 

which the reflection exists. 

The diffracted field is determined using the modified Pauli-Clemmow 

method of steepest descents [ 8 ] - [ Q ] ,  and it considers the effects of the 

four poles nearest the steepest descent paths. This yields four Fresnel 

transition functions which provide continuity across the shadow 

boundaries. The formuiation is analogous to the perfectly conducting 

case with the introduction of suitable multiplying factors which are 

related to the reflection coefficients. These factors assure that the 

discontinuity in the diffracted field will provide the proper continuity 

in the total field. 

The surface wave terms are obtained from the residues of complex 

poles of the auxiliary Maliuzhinets function. Unlike the geometrical 

optics poles, the location of the surface wave pole depends on the 

properties of the wedge material and hence the surface wave only exists 

for certain impedances. In addition, the surface wave exists only over 

a finite angular range, and a discontinuity is encountered at the 

surface wave boundary. This is analogous to the discontinuity at the 

geometrical optics shadow boundary. A surface wave transition field is 

added to uniformly account for the effects of the surface wave pole 

near the steepest descent path. This transition field removes the 
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discontinuity at the surface wave boundary just as the diffracted field 

removes the geometrical optics discontinuities. The surface wave 

transition field includes a Fresnel transition function of complex 

argument which provides the proper discontinuity. The steepest descent 

evaluation near the surface wave pole utilizes the method of Felsen and 

Marcuvitz [lo] for complex poles. 

11. THE EXACT INTEGRAL REPRESENTATION 

e 

c 

0 

e 

a 

The canonical wedge structure of interest is shown in Fig. l a .  The 

wedge has two faces located at 050 and 0=nn, referred to as the 0 and 11 

faces, respectively. An exterior wedge has values of n in the range of  

ljnL2, while for an interior wedge Ocn<l. The faces have uniform 

normalized surface impedances of q, and qn, respectively. A plane wave 

is incident from the direction 0 '  and the observation point P is at a 

distance p from the edge of the wedge at an angle P(, where 0 and @ '  are 

both measured from the 0 face. Assuming an incident field U o ,  the exact 

solution for the total field, including the incident and scattered 

components, is [l], [5] 

where 'y is the contour shown in Fig. lb. 

assumed and suppressed. In (1) Y ( a )  is the auxiliary Maliuzhinets 

An ejwt time convention is 
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function (13 and depends on the parameters n, 6, and 6,. Both the E, 

and H, polarizations are included in this representation [ 7 ] .  

soft (TM, Ez) polarization 

For the 

( 2 )  
1 sir@. = - 3 Ut(r,O) = Ez(r,O) sineo = - 

'10 1, 

whereas f o r  the hard (TE:, H,) polarization 

Ut(r,O) = HZ(r,O) sineo = q, sine, = qn (3) 

The contribution of the steepest descent paths SDP(n) and SDI' ( -n) ,  

shown in Fig. l b ,  are added to enclose a region of the complex a plane. 

The steepest descent path SDP(6) is the path along which 

Orr = c~s-~[l/cosh(a~)] sgn(ai) + 6 ( 4 )  

where a=ar+jai [ l l ] .  Since the integral around the closed path is 

proportional to the sum of the enclosed pole residues, the total field 

can be written as 

Vt(p,0) = ( 5 )  

1 0 '  
v(a + - 0) sin(r) jkpcosa 

v c y  - 0') cos(,) a- 0 - cos(;) 0 e  n 
% - 2 Res 

P n 

0 l  
v(a + - 0 )  sin(,) jkpcosa da e 2nn j - 0 1 )  cos(-y-) a- 0 - cos(--) 0' 

SDP n 

where SDP is the path SDP(n) + SDP(-n) and the ap are the poles of the 

integrand. The notation Res[f(a),a ] represents the residue of f(a) a t  P 

P' the pole a 

The auxiliary Maliuzhinets function v(a) can be written in terms 
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of the Maliuzhinets function +',(a) by [ l ] ,  [ 4 ]  

Following 1 4 3 ,  the order of the Maliuzhinets function will be denoted 

by the edge parameter n rather than the half wedge angle @ = F. The 

half angle @ was more appropriate for Maliuzhinets choice of 

referencing 0 and go to the open wedge bisector. The necessary 

properties of Yn(a) used in this paper are [ l ] ,  [5] 

Yn(a - nnj = cot z(a 1 + 5) Yn(a + nn) 
( 7 )  

e 

a 

111. THE GEOMETRICAL OPTICS TERMS 

The simplest way to calculate multiply reflected fields within an 

interior wedge is t o  use a reflection coefficient approach in which the 

incident field is multiplied by a reflection coefficient at each 

reflection. In this section it is shown that the pole residues of the 

exact solution give identically the same geometrical optics field as the 

simple ray tracing model. Both methods give identical results in 

magnitude, phase and also in the angular range over which a particular 

reflection mechanism exists. This has been shown previously only f o r  

for singly reflected fields for the half plane [ 3 ] ,  [ 6 ]  and the exterior 
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wedge [ 4 ] .  

4D 

a 

* 

For a geometrical analysis 

incident field is multiplied by 

and phase factors. The surface 

appropriate for infinite planar 

sin 'Q - sin 8, 
'n(') = sin 'Q + sin en - 

of the multiply reflected fields, the 

the appropriate reflection coefficients 

impedance reflection coefficients, 

boundaries and plane wave incidence are 

( l o a )  

where 'P is the angle of incidence measured from the planar surface to 

the incident ray. 

In general, the geometrical optics reflected field for any multiply 

reflected component C can be written as 

where fn(0',80,8n) is a product of reflection coefficients and a is a 
P 

distance factor which yields the appropriate phase delay. The multiply 

reflected field is identified by a sequence of 0 ' s  and n ' s  indicating 

the order of' reflection. As an example, component OnOn is the quadruple 

reflected field, incident on face 0, which in order reflects from face 0 

to n to 0 to n. 

In Table I ,  the terms rn(0',GO,Gn) and ap are listed for reflection 

mechanisms of up to fourth order. In addition, the range over which 

these terms exist is listed, with the implied conditions that O<@<nn and 

Oc0'<nn. The number of terms presented is sufficient to identify the 

pattern by which the table can be extended. 

has been chosen to correspond to the positions of the poles in the exact 

The ordering of this table 
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solution. 

When considering the exact solution, the geometrical optics poles 

must first be identified. The geometrical optics poles are those poles 

for which 

e 

0 
a - 0  

COS(+) = cos(;+ 

The geometrical optics poles are 

a 

e 

+ where m is an integer and p- = 0 i 0 ' .  The poles occur in two sets of' 

equally spaced poles corresponding t o  either the upper or lower sign. 

For each set, the spacing between poles is 2nn. I f  0 '  is considered t o  

be fixed and if 0 runs from 0 to nn, then the geometrical optics poles 

move from 3 1 3 '  + 2mnn to rd' + 2mnn + nn. These pole loci are plotted 

in Fig. 2 for 0 '  = 30° and an 85O interior corner. 

poles with increasing 0 is indicated by the arrows, and it is noted 

The movement of' tho 

half the distance to the next pole of' 

surface wave poles are shown for 

that a given pole can only move 

the same set. In addition, the 

q =q =0.2 + j 0 . 8  although they o n  are not considered until a later 

section. A particular pole con-ributes to the exact integral solution 

only if it lies within the steepest descent paths, and hence it is 

possible to identify each pole with a specific reflection mechanism by 

the angular ranges of existence listed in Table I .  The reflection 

component corresponding to each pole is labeled in Fig. 2. For each 

geometrical reflection, the appropriate values of p and m are listed in 

Table I. 
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From the exact solution, the contribution of the geometrical optics 

pole is -2nj times the residue of the pole, where the ( - )  sign is 

attributed to the clockwise contour enclosing the pole. For the pole 

ap= 0 2 0 '  + 2mnn, the residue contribution is 

By comparison with Table I ,  it is clear that the phase factor matches 

the geometrical phase term. However, it remains to show that the ratio 

of auxiliary Maliuzhinets functions is a product of reflection 

coefficients as in the geometrical analysis. For the incident GO field, 

which corresponds to p=p-=0-0', m=O, the ratio is obviously unity and 

no further consideration is necessary. 

The ratio of auxiliary Maliuzhinets functions (and the leading 

sign) is denoted by r'n(O',eO,On) and can be expanded in terms of 

Maliuzhinets functions using ( 6 ) .  

n Yn(-O' + nn + 2 - 8 ,  + 2mnn) r , p i  ,e, ,en) = - n Yn(-O' + nn + 2 - 
e 

qn(--di + nn - n + e, + 2mnn) 

Yn(-0, + nn - 2 n + 0,) 
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and for p = p+ = 0+0 '  

yn(g1 + nn - 3 n + e ,  + Bmnn) 

qn(0' - nn - 2 n + 0,) 

The two single reflections are considered first since both are 

exceptional cases. Each can be reduced to a single reflection 

coefficient using the trigonometric identity * 

For the reflection from face 0 (p=p+,  m = O )  the last two terms in (15) 

and (16) reduce to unity. Using (6), the ratio r,-,(O1,eo,en) = r , (# ' )  

Similarly f o r  the single reflection term from face n (p=p+,  m= -1) the 

first two terms of (15) and (16) reduce to unity. Using (6), the ratio 
a 

The higher order reflection coefficients remain t o  be considered. 

a 

a 

To obtain the appropriate products of reflection coefficients for the 

higher order reflections, the required identities are 

e 
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a 

These are just algebraic identities, true for any function, which arc 

easily verified by expanding the product. 

Using ( 6 ) - ( 8 )  and (15)-(19), the geometrical optics residues can be 

reduced completely to products of reflection coefficients. The final 

forms of the geometrical optics residues are 

- 
For 8 = 8 = 0-0', m>O 

m m 
Q=1 Q=1 

rIT(O1,eO,en) = ll ro(2Qnn - 0') IT rn((2Q-l)nn - 0') 

- 
For B = B = 0-0 ' , m<O 

a 

e 

e 

I m l  l m t  rn($',eO,en) = TI ro(O' + (24-2)nn) TI rn(0I + (24-1)nn) (21) 
Q=l 9=1 

= 0+@ I , m>O + For 8 = 8 

m+ 1 m 

Q =1 9=1 
rn(0',eO,en) = lT ro(O' +(2Q-2)nn) TI rn(0I + (24-l)nn) (22) 

+ For  8 = B = 0+0', m<-1 

The cases (p-,m=O), (p+.m=O), (p+,m=-1) are the incident and singly 

reflected terms already considered. By comparison with Table I, it is 

evident that these expressions are identical to the geometrical ray 

tracing analysis. 

e 

e 
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IV. THE UNIFORM DIFFRACTED FIELD a 

a 

0 

e 

a 

a 

e 

The diffracted field contribution is obtained from an asymptotic 

evaluation of the integral contribution along the steepest descent 

paths. The approximation of the integral uniformly accounts for the 

effects of poles passing through the saddle points. The modified 

Pauli-Clemmow method of steepest descents is utilized to assure that 

the diffracted field provides the proper continuity across geometrical 

optics shadow boundaries as the geometrical optics poles pass into or 

out of the region between the steepest descent paths. As in the 

uniform geometrical theory of diffraction for the perfect conductor 

case, the effect of the four poles nearest the steepest descent paths 

will be considered, thereby yielding four Fresnel transition functions. 

The major difference for the impedance wedge problem is the multiplying 

factor preceding each cotangent-Fresnel term. These multiplying 

factors are the auxiliary Maliuzhinets function ratios which provide 

the proper continuity in the reflected field. The discontinuities in 

the diffracted field are precisely equal and opposite to the 

discontinuities of the geometrical optics field at the shadow 

boundaries. 

The diffracted field is written as 
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qJ(-n + nn - 0 )  + 
- 2 cot(y*)F[kp(l + cos(p+ - 2nn N:))] 

(Ucy -- 0 ' )  

where F[x] is the Fresnel transition function of [ 8 ]  and where the N's 

are integers which most nearly satisfy 

= +n 
- 

2nn N+ - p 

2nn NI - p = -n 

2nn N+ - p+ = +n 

2nn N+ - p = -n 

- 

+ 

+ - 

Near the shadow boundaries, the cotangen f unc 

(25a 

(25b 

ion becomes very large 

while the Fresnel transition function approaches zero. Together they 

provide the proper discontinuity at the shadow boundary. However the 

cotangent-Fresnel product is not a computationally effective 

formulation for determining this discontinuity accurately. A better 

formulation is to use the first term of the cotangent Laurent series 

and the first two terms of the small argument form of the Fresnel 

transition function. The result is to use the approximation 

cot(.*) F[kp(l + cos@ - 2nn N)] (26) 

2 n [ m p  sgn E - 2kp E eJn'4 eJn'4 3 
where E is small and, depending on which cotangent-Fresnel product is 

replaced, E is given by one of the following expressions. 
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- 
€ = I T - @  + 2 n n N I  

E = n + p+ - 2nn N+ 

o r  E = n - @ + 2nn Ni 

+ 

+ 

V. THE SURFACE WAVE 

a 

e 

I) 

a 

0 

0 

The surface wave is a wave which propagates along one face of the 

wedge and which is typically exponentially decaying away from the f a c e .  

It is confined to a particular angular range from the wedge face 

whenever it exists. Since the wave may decay slowly along the face, 

its contribution can be more dominant than other scattering mechanisms 

near the wedge surface. 

The surface wave is determined by the residues of enclosed poles 

of the Maliuzhinets function between the steepest descent paths. The 

surface wave poles are located at [ l ] ,  [ 5 ] ,  

a, = 0  + n + 8 ,  (28a 1 

a, = 0 - nn - n - 8, (28b 1 

for the 0 and n faces, respectively. As for the geometrical optics 

poles, the a, pole moves from n + 8, to nn + n + 8, as 0 increases from 

0 to nn while the an pole moves from -nn - n - 8, to -n - 8,. These 

loci are shown in Fig. 2. The a, pole can only be within the steepest 

descent paths for 0 less than some maximum value. Similarly, the a, 

pole can only be within the steepest descent paths for 0 greater than 

some minimum value. Hence each surface wave term is bounded to a region 

e 
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near the corresponding face. In general the surface waves corresponding 

to the pole a exists if 

-n < ar - c~s-~(l/c:osh(a~)) sgn ai < n (29) 

where a = ar + jai 

To determine the pole residue, (9) is used. This expression 

isolates the singular part of the pole in the cosecant function and 

hence the residue is readily calculated. The surface waves are 

0' 
sin - -jkpcos(O+eo) e n 

n 2sin 
uOSw= uo nn w, - 0') cos(-ij--) n+e, - cos(-) 0' 

n e 

e 

e 

e 

e 

e 

By the symmetry of the wedge, it is noted that either of these can be 

obtained from the other by the replacement of 0 by nn-$, 0' by nn-$', 

e, by en, and en by e, .  

As a surface wave pole moves outside the steepest descent paths, 

the contribution of the surface wave term vanishes. Hence a 

discontinuity exists at the boundary of the surface wave region. In 

addition the Contribution of the steepest descent path integration is 

affected by the nearby surface wave pole. The integral can be 

uniformly evaluated to account for the nearby pole using the steepest 

descent method of Felsen and Marcuvitz [lo]. This formulation provides 

e 
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the proper continuity in the total field as the surface wave pole 

crosses the steepest descent path. The asymptotic evaluation of the 

integral introduces a Fresnel transition function of complex argument. 

The surface wave transition field is e 
0' sin - n 

-I n 
(31a) 

-jkp - sin - e 2n 
+F w r  nn - 0 1 )  

COS(y-) n+e, - cos(:) 0' 
= uo - 

'ZUTR 

0 

0 

0 

0 

e 

F[kp(l -  COS(^+^,))] - 1 
,A~(cos(~+~,) - 1) 

0 l  sin - n 

n n 

"r n 
(31b) 

-jkp ,/+ sin - e 2n 
0 '  nn+n+8 = uo - 

") - cos(-) 
"tUT'R 

This Fresnel transition function is as defined in [ 8 ]  but extended to 

complex argument. The f i  in the definition of F[z]  should have a 

n branch cut along the positive imaginary axis so that - < arg ,/z < 3 .  

When the pole is far from the steepest descent path, the Fresnel 

transition function is approximately unity, and hence the surface wave 

transition field contribution is zero. 

A troublesome case occurs when the surface wave pole coincides 

with a geometrical optics pole. Since geometrical optics poles are 

e 
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always real, this can only occur for real surface impedances. Real 

surface impedances, however, cannot support surface waves as the 

surface wave pole will never lie within the steepest descent paths. 

However if the surface wave transition field is calculated by blindly 

applying (31a) and (31b), erroneously large results will occur whenever 

the surface wave pole is far from the steepest descent paths yet near a 

geometrical optics pole. Indeed the surface wave transition field 

should be zero when the surface wave pole is far from the steepest 

descent paths. Hence expressions (31a) and (31b) should only be used 

when the surface wave pole is closer to a steepest descent path than it 

is to a geometrical optics pole. When the surface wave pole is far 

from the steepest descent path, the surface wave transition field 

should be taken as z e r o .  

e 
VI. NUMERICAL RESULTS 

e 

0 

e 

e 

Using the uniform diffraction theory developed in this paper, 

diffraction patterns of various wedge configurations were computed. The 

wedges studied in this section are all interior wedges although the 

theory is equally useful for exterior wedges. The formulation can be 

used to study the field in the vicinity of the wedge when the wedge is 

illuminated by a plane wave, and by reciprocity, it can also be used to 

examine the far field pattern of a line source located within the 

interior impedance wedge. 

For the plane wave diffraction problem, the plane wave is incident 

from the direction $'=30° measured from the 0 face of the wedge. The 
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field pattern is determined at a distance p=1.6A from the edge of the 

wedge at an angle 0 .  The total field is normalized t o  an incident plane 

wave of unity. For the line source diffraction problem, the line source 

is located at a distance p=1.6A from the edge of the wedge at an angle 

0'=30° from the 0 face. 

direction 0 and the total field is normalized to a line source field of 

unity. Both hard and soft polarizations are considered for surface 

impedances which may be real or  complex. For any of the illustrated 

patterns, the opposite polarization is implicitly given by the same 

figure using the reciprocal of the normalized surface impedance shown. 

The far field pattern is determined in the 

In Figs. 3 and 4 ,  the effect of increasing the surface l o s s  in the 

wedge faces is examined for the far field pattern of a line source 

within the interior wedge. Fig. 3 shows the soft polarization while 

Fig. 4 gives the hard polarization results. The wedge has an interior 

angle of 98O and has a normalized surface impedance of 0.0, 0.25. o r  

0.50. The case r (=O.O corresponds to the perfectly conducting wedge and 

for this case the soft polarized field of Fig. 3 is zero on the face of  

the wedge. For the hard polarized field of Fig. 4 ,  the field is nonzero 

on the face of the wedge when the surface is perfectly conducting. As 

the l o s s  increases to q=0.25 and then to q=0.50, the reflected and 

diffracted fields rapidly diminish. The total field approaches the 

normalized value of unity corresponding to the incident field of the 

line source alone as the surface loss increases. 

In Fig. 5 ,  the effect of the reactive portion of the complex 

surface impedance is examined. The line source diffraction problem is 

considered, and the far field pattern is computed. An interior wedge 
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0 

angle of 9Co 

normalized surface impedance values range from 0.5-j1.0 to 0.5+j1.0. 

The reactive portion of the surface impedance effectively causes a phase 

change of the reflection and diffraction coefficients. Since the 

structure of  the lobes of the far field pattern is determined by the 

relative phases of the various scattering components, the far field 

pattern is very sensitive to changes in the reactive portion of the 

surface impedance. 

b ciiusen and the soft polarized case is shown. The 

In Pigs. 6 and 7 ,  the field patterns for various wedge angles are 

shown. 

complex surface impedance of q=0.5-jl.O was selected. In Fig. 6 the far 

field pattern of a line source within the wedge structure is shown. In 

Fig. 7, the field pattern in the vicinity of the wedge is given for 

The interior wedge angles are 90°, 98O and 77O and a normalized 

plane wave incidence from the direction $'=30°. 

field pattern is greatly changed by increasing or decreasing the 

interior wedge angle. This is markedly different than the exterior 

wedge case for which the field pattern is quite insensitive to the 

exterior wedge angle except for in the vicinity of the wedge face. A 

notable difference between the line source far field pattern problem and 

the incident plane wave diffraction problem is observed at the wedge 

faces. For the line source within the lossy impedance wedge, the 

geometrical optics field always goes to zero at the wedge faces because 

the reflected field approaches grazing incidence. At grazing incidence 

the reflection coefficient becomes -1 for both polarizations, and the 

reflected field cancels the incident field. This is not the case for 

the incident plane wave diffraction problem because the incident field 

It is evident that the 
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does not approach at grazing incidence when the field observation point 

is located near a wedge face. In general, the geometrical optics field 

will not be zero on the faces of the lossy impedance wedge for an 

incident plane wave. 

In Figs. 8 and 9, the individual scattering mechanisms are 

illustrated for the soft: polarization plane wave incidence case with 

normalized surface impedances of O.l+j0.2. In Fig. 8 ,  a 90° interior 

wedge is considered. For the right angled wedge, the solution can be 

analyzed entirely using image theory; hence only the incident and 

geometrical optics terms appear and all other terms are zero. In Fig. 

9 ,  an 85O interior wedge is considered and for this wedge angle the 

image theory is not sufficient. Discontinuities in the reflected field 

occur at 0=20° and 0=40° corresponding to shadow boundaries of the 

double reflected fields and 9, respectively. The discontinuities in 

the diffracted field exactly compensate for the geometrical optics 

discontinuities. In addition, a surface wave exists on each face and 

the surface wave boundaries appear at approximately t d = 6 O  and 1U=79~. 

surface wave transition field exactly compensates for the surface wave 

discontinuities and the resultant total field is continuous everywhere. 

The 

VII. CONCLUSION 

A uniform asymptotic evaluation of the exact integral solution for 

the field scattered by interior impedance wedges has been performed. 

The case of normal incidence on a wedge with uniform but different 
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impedances on each face was considered for both soft (EZ) and hard (HZ) 

polarizations. The results are applicable to both the interior and 

exterior wedges although the interior case is emphasized in the 

numerical results presented. The uniform asymptotic evaluation 

separates the individual components of the total field. The extracted 

terms include the incident and singly reflected fields, the multiply 

reflected fields, the edge diffracted field, the surface waves and the 

surface wave transition fields. 

The singly and multiply reflected fields, written as ratios of 

Maliuzhinets functions, were shown to be identical to the product of 

reflection coefficients and phase factors obtained from a geometrical 

ray tracing analysis. The reflection coefficients used are appropriate 

for plane wave incidence on an infinite planar uniform impedance 

surface. The pole positions between the steepest descent paths 

determined the angular range over which the multiply reflected fields 

exist, and these limits matched those determined using the ray tracing 

approach. 

The diffracted field is calculated from the modified Pauli-Clemmow 

method of steepest descents. The four poles nearest the steepest 

descent paths are considered and hence four Fresnel transition 

functions are obtained. The diffracted field provides the proper 

discontinuity to compensate for the discontinuity in the incident, 

singly reflected, and multiply reflected fields. The formulation is 

analogous to the perfect conductor case with the introduction of ratios 

of auxiliary Maliuzhinets functions as multiplicative factors. These 

factors are necessary because the reflection coefficients are not 21 as 
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in the perfect conductor case. The cotangent-Fresnel functions are 

computationally difficult to evaluate near shadow boundaries, and 

alternate expressions are presented for use near the boundaries. These 

small-argument expressions are more computationally effective for 

accurate calculation of the discontinuity. 

The surface wave arid the associated surface wave transition field 

were presented, and the range of existence of each surface wave was 

identified. The surface wave exists over a finite angular range for a 

particular surface impedance, and the surface wave transition field is 

added to provide the proper continuity across the surface wave 

boundaries. Even if the surface wave does not exist, the surface wave 

pole may be near the steepest descent path and hence the surface wave 

transition function should be included. For observations far from the 

surface wave boundaries, the surface wave transition function vanishes 

and only the geometrical optics, diffracted, and surface wave terms are 

important. The surface wave generally decays exponentially away from 

the associated surface, but it might be only weakly attenuated along the 

surface face. Hence the surface wave term could be the most dominant 

term near the surface, depending on the value of the surface impedance. 

VIII. PUBLICATIONS 

During this reporting period three refereed papers supported by 

this NASA Grant have appeared in IEEE publications. These papers are 

the following: 



-24- 

0 

0 

1. T. Griesser and C .  A .  Balanis, "Backscatter analysis of dihedral 
corner reflectors using the phsyical theory of diffraction," I€€€ 
Trans. Antennas Propagat., vol. AP-35, no. 10, pp. 1137-1147, 
October 1987. 

2. 'I'. Griesser and C .  A .  Balanis, "Dihedral corner reflector 
backscatter using higher-order reflections and diffractions," IEEE 
Trans. Antennas Propagat., vol. AP-35, no. 11, pp. 1235-1247, 
November 1987. 

3. D. P. Marsland, C .  A. Balanis and S .  Brumley, "Higher-order 
diffractions from a circular disk," IEEE Trans. Antennas Propagut. , 
vol. AP-35, no. 12, December 1987. 

I X .  FUTURE WORK 

Future work on this project will concentrate on applying these 

interior wedge diffraction function to predict the scattering patterns 

of corner reflectors with finite size plates. The contributions of 

surface waves will also be accounted for. 
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